
	

	

	

FINAL REPORT
PROJECT
Creation of a methodology and calculation solution for
the modal distribution of the mobility of the city of Tartu

08	Fall

	

	

	

Project Details:
	
Name	 Registration	code	
University	of	Tartu	 74001073	
Project	Name	
Creation	of	a	methodology	and	calculation	solution	for	the	modal	distribution	

of	the	mobility	of	the	city	of	Tartu	
Document	Type	 Final	Report	(Ver2.0)	
Project	Period	(start	-	end)	 19/05/2021	–	30/11/2021			
	
	
	
	

1 INTRODUCTION
Modal-split is one of the complex tasks in transportation research. The main approach in the
literature for extracting the modes of transport has been traditional surveys. Although splitting the
different vehicle types, using data of city sensors has been studied widely, but the challenge arises
when in addition to the vehicles, we want to understand the share of pedestrians and cyclists in daily
urban mobility. The quality of the results in the latter case depends heavily on the details of the data
collected by the sensors and available statistics as a base.

In collaboration with the City of Tartu, this project aims to extract the daily share of trans-
portation modes in the city. We calculate the hourly district-level origin-destination matrices
(OD-matrices) of each mode of transportation. The map of different districts of the city of Tartu is
presented in the Fig. 1.

Figure 1. Different districts of city of Tartu

2 ARCHITECTURE
To perform the transport mode share estimation, we have developed a software solution comprising of
two main blocks: the data analysis pipeline and web dashboard. The data analysis pipeline extracts
fine-grained data (usually single-trip or single sensor-level granularity) from several modality-
specific data sources (e.g., bus ticket validation infosystem). The raw data is analyzed to produce
hourly and district-level estimates for the entire city while taking into account the directionality of
the trips between districts. In other words, the output is an OD-matrix for each of the four transport
modes for a one-hour period.

The web dashboard provides a graphical user interface in the form of a web application for
visualizing and browsing the pipeline’s results. Additionally, the dashboard provides additional
aggregation functionality, such as presenting 24h period results based on the hourly pipeline outputs.
The two blocks are linked by persistent storage: either a SQL database or simple disk storage. The
pipeline is scheduled to execute once every 24 hours to analyze the previous day’s information and
store the results to make them available for the dashboard.

Figure 2. The architecture of modal split data analysis pipeline.

In the following sections we further detail the blocks and their integration. The high-level view
of the architecture can be seen on Fig. 2.

2/18

2.1 Data analysis pipeline
The pipeline consists of four modules (packages); one per transport modality and an execution
orchestrator. The orchestrator ensures the execution of individual modules in a specified order
(necessary due to the interdependence between modules) and manages the re-execution of modules
that produce failures.

2.1.1 Transport Modality Packages
Every modality-specific package follows the same basic design: it should fetch all necessary
input data for its execution (either via HTTPS REST API calls or from local storage), perform
the aggregation and analysis, and then save the results into persistent storage. If one package’s
input includes results of another package (e.g., as in the case of pedestrian package relying on
bike package’s output), the package assumes the execution orchestrator to have already finished
execution of the necessary packages.

The specifics of each package are detailed in the rest of the report; a more detailed perspective
of the interdependence of the packages and their internal logic can be seen in Fig. 18.

3 DATA SOURCES
Different data sources used as the packages’ inputs are listed in Table 1. Data sources can be
categorized into dynamic and static. Dynamic sources represent those whose data is fetched on-
demand each time the pipeline is run. Static files are fixed instead of on-demand loading. Static
files are used for data that are expected to change infrequently, such as the geo-information about
Tartu district borders.

3.1 Dynamic sources
Dynamic sources expose their data to the pipeline through some HTTPS RESTful API. In the case
of Tartu City’s Cumulocity platform instance, three different types of sensor counts (ECO, Thinnect,
AVC) and one kind of coordinate information (Bus GTFS) are used. ECO sensors count pedestrians
and bicycles. Thinnect sensors count vehicles and light traffic1. AVC sensors count vehicles. Most
of the sensors also consider the directionality of the movement (they count events for a certain
direction of movement). Ridango API provides anonymous data about bus ticket validations. The
validation events include information about the bus stop, the bus line, and the time of the event.
Bewegen API provides data about individual bike trips using the city bike-sharing system. This
includes the time and bike charging station where the trip was started end where it was ended.

The Cumulocity, Bewegen, and Ridango APIs provide the functionality to query data for a
specific date.

3.2 Static sources
Static sources are the following files.

• A file depicting the geographic shapes/borders of the districts, used to identify which trip
originated/destinated in which district. The file also assigns an identifier code to each district

• A mapping from City Bike charging stations to districts.

4 METHODOLOGY
In this section, the detailed methodology used in each package is discussed. Every package (Fig. 2)
outputs an hourly district-level OD-matrix which corresponds to one mode of transportation.

1light traffic: both pedestrians and bicycles, undistinguished.

3/18

Data Source Packages Type
Cumulocity ECO Sensor Measurements Bike, Pedestrian Dynamic
Cumulocity Thinnect Sensor Measurements Pedestrian, Vehicle Dynamic
Cumulocity AVC Sensor Events Vehicle Dynamic
Cumulocity Bus GTFS Events Vehicle Dynamic
Bewegen REST API Bike Dynamic
Ridango REST API Bus Dynamic
peatus.ee Bus Stop Information Bus Dynamic
Bicycle Charging Station to District Map Bike Static File
Tartu Districts Geodata File All packages Static File

Table 1. Data sources of Modal Split pipeline. “Cumulocity” refers to Tartu City Cumulocity

4.1 Bus Package
The goal of the bus package is to estimate the district-level OD-matrix. All bus users in Tartu are
expected to scan their tickets at the entrance to the bus. Therefore, the system stores the origin stop
for each passenger automatically. However, the challenge is estimating the trip destination since
there is no exit record stored for the bus passengers. Fig. 3 presents a more detailed architecture of
the bus package. The output of the bus package is a district-level, dynamic OD-matrix that will be
used for initialization in vehicle and pedestrian packages.

4.1.1 Algorithm
In this part, different steps of building a dynamic OD-matrix for bus passengers, are explained.

Data acquisition. The bus package uses two sources for retrieving the data. Ridango Api makes
the majority of our input data. It provides daily information about public buses and their routes,
trips, and passenger validations on each bus. Information about stops is extracted on a daily basis
from peatus.ee. As the first step of the algorithm, all of this data is downloaded through HTTP
requests.

Choosing potential stop station for each passenger. Given the trip origin, the potential stop
stations for each passenger is listed. This list contains all the following bus stations in the same bus
route, excluding the stations that the bus has not stopped. Ridango Api provides the information on
whether or not a bus has stopped at each stop of its route. In the end, we choose the stop station for
each passenger uniformly at random from the list of potential stop stations for that passenger.

Building OD-matrix. After having the start and the stop station for each bus passenger, the
stations are mapped to the city districts, and the district level hourly and daily OD-matrices are
constructed. These matrices present the mobility flow of bus users in the city and will be used later
as input for pedestrian and vehicle packages.

4.1.2 Lab Validation
Bus input data directly retrieve information from scanning devices located in buses. Therefore, the
number of ticket validations per day reflects the number of bus trips with very high accuracy. Hence
validating the number of trips is not relevant in this package.

4/18

Figure 3. Detailed architecture of Bus Package.

4.2 Vehicle Package
The goal of this package is estimating daily number of trips by vehicles in the city of Tartu. This
estimation relies on the data of AVC and Thinnect sensor devices located inside and in the border of
the city (Fig. 4). In addition, to the number of vehicle trips, the hourly district level OD-matrix of
vehicles’ mobility is estimated.

4.2.1 Algorithm
Most cities employ traffic counters to understand the traffic volume in different city regions.
However, the counters do not cover all the city streets, and the sensors’ counts can be considered
a sample of the traffic dynamic. Fig. 4 shows the sparsity of the sensors in the city of Tartu. The
standard approach for estimating the absolute number of trips is simulating the urban trips by
a traffic simulator. In this work, Simulation of Urban Mobility (SUMO) is used. SUMO is an
open-source, microscopic, and continuous traffic simulation developed by the German Aerospace
Center and community users. In particular, we used SUMO simulator to overcome the gap between
the sensors’ traffic counts and actual traffic flow.

In the first step, the map of the region is extracted from OSM 2 and converted to a SUMO
network. For the initialization, a set of trips for the whole 24 hours is required. This set of trips
consists of two parts. The first part comes from the OD-matrix of bus trips (output of bus package),
which gives an initial estimation for trips inside the city. The second part covers the trips into
and outside of the city. For this, the data of the AVC sensors and districts populations are used.
Lastly, sensors’ data is used to calibrate the number of trips. The architecture of vehicle package is

2Open Street Map https://www.openstreetmap.org

5/18

https://www.openstreetmap.org

Figure 4. Locations of AVC Vehicle counters (left), and Thinnect counters (right).

Figure 5. Detailed architecture of the vehicle package.

6/18

presented in Fig. 5.

4.2.2 Lab Validation
In order to understand how accurately the simulator is estimating the traffic in the city, we run a
test in the lab environment for a set of random synthetic trips. In other words, the package is fed
by the synthetic sensors’ data of vehicle trips as an input; then, the output is compared against the
synthetic trips. The lab validation for the vehicle package consists of the following steps.

Validation steps:

1. The schedule of buses is given to the simulator.

2. A set of random vehicle trips are generated. In this step, a trip is a pair of (origin, destination).

3. A set of synthetic multi-modal trips (bus and walk) is generated.

4. Trips are simulated, meaning a route is assigned to the trip from origin to destination.

5. The sensors are located on the map and the trips passed by the sensors are being counted.
Therefore, synthetic sensors’ data are extracted in this step for the random trips.

6. Synthetic sensors’ data from the previous step and the OD-matrix of bus trips (output of the
bus package) are given to the algorithm.

7. Finally, the algorithm outputs a set of trips, and the error can be calculated.

A set of 2827 random trips is generated in a sample validation run, and after going through the
validation steps, the vehicle package output 2464 tips. For measuring the precision of the method,
the relative error is calculated.

E =
absolute error

real value
=
|2827−2464|

2464
= 13%.

Fig. 6 presents the hourly distribution of the number of synthetic trips and the estimated number
of trips by SUMO after calibration. It can be observed that the error is high from midnight until
5:00 am. The reason for that is the unavailability of bus data during these hours for initializing the
algorithm.

Figure 6. Comparison of hourly number of generated trips and the number of estimated trips by
vehicle package.

7/18

However, if we only compare the output of the algorithm with the trip data after 5:00 am, as
it is presented in Fig. 7, starting from 2238 random trips, the algorithm estimates 2284 trips. The
following calculation shows a considerable improvement in error.

E =
|2238−2284|

2238
= 2%.

Figure 7. Comparison of hourly number of generated trips and the number of estimated trips by
vehicle package, starting from 5 am.

4.3 Bike Package
The goal of this package is to estimate the number of trips by bicycles for every hour, using the
Tartu Smart Bike trips as a basis and scaling them to acquire the total amount of bike trips.

4.3.1 Algorithm
The bike package algorithm consists of three main steps. In the first step, the Tartu Smart Bike share
data is read from the API. Next, the scaling ratio is calculated. As the last step, the parsing and
scaling of the data is conducted.

Data acquisition. The bike package is heavily based on the city bike data. Thus, the first step
is pulling the relevant data from the Bewegen API. This is done in batches of 50 trips until all of the
trip records for a given date are acquired.

Calculating the scaling ratio. While the Bewegen API gives us the exact number of city bike
trips, we also need to find the total number of bike trips, including personal bicycles. For that, a
scaling ratio is calculated for a given date and used as a multiplier for the city bike trips. For the
scaling ratio, the sensors located on bridges are used (Fig. 8). There are five Thinnect sensors,
counting all the “light road users” (kergliiklejad), and one ECO sensor located at Turu sild, that
counts the cyclists and pedestrians separately. The Turu sild ECO sensor readings are used to
calculate the ratio between cyclists and pedestrians crossing the bridge. This ratio is used to acquire
the number of cyclists crossing other bridges. Next, the city bike trips crossing any of the bridges
are counted, following a simple logic; if the origin and destination docs are on the different sides of
the river, the bike has to pass one of the bridges and be included in the sensors counts. Using the
total number of cyclists counted at all the bridges and the number of Tartu Smart Bike users crossing
any of the bridges, the final share of city bike users (out of total bike users) can be calculated.

8/18

Figure 8. Sensors used for the scaling solution in bicycle package. Blue ones are Thinnect sensors,
green is ECO sensor.

Parsing and scaling. As the last step, the city bike data is parsed and scaled. Since the final
solution is district-based, the station-level city bike data needs to be mapped to district-level data.
During this step, two missing districts are added - as Variku and Supilinna districts do not have any
Tartu Smart Bike share stations, the trips from the stations located close to the borders of these two
districts are split between given districts. If a station is closer than 100 meters from either of the
missing districts, we assume that some of the trips are set out to the corresponding missing district.
Once the mapping process is completed, the scaling factor is applied, and the data is saved as an
OD-matrix.

4.3.2 Lab Validation
For the lab validation, a synthetic dataset was generated using a traffic simulator, similarly to the
vehicle package. Since the Tartu Smart Bike data is the basis of the package and always assumed
reliable, the part of the bike package that needed validating, was the scaling. Three relevant datasets
were returned from the simulation: city bike trips, Turu sild ECO sensor data and Thinnect bridge
sensors’ data.

The total of 2145 pedestrian trips, 1680 city bike trips, and 1391 normal bike trips are generated
and simulated. Then, the synthetic sensor reading for bridges sensors are extracted from the
simulator and the data are fed into the package.

Knowing the actual counts of personal and city bikes in the simulation, the result from the
scaling solution could be compared to the actual bicycle count from simulation.

The scaling solution yielded the percentage of 52.02% (city bikes / total bikes) on the synthetic
data. Knowing the number of city bike trips, the total estimated number of bikes could be calculated:

(1680/52.02)×100 = 3229

Using the total number of bicycle trips from the generated data (1680+ 1391 = 3071), the

9/18

relative error margin of the solution is calculated as follows.

E =
|3229−3071|

3071
= 5.16%

4.4 Pedestrians Package
Calculating the number of trips on foot is the most challenging task in modal share calculations.
The common approach in the literature for estimating the share of pedestrians is using surveys’ data
for the whole estimation or as the base of estimation. However, the surveys usually cover a small
fraction of the population and have low time-frequency. In the absence of survey data for Tartu city,
we developed a novel data-driven approach for estimating the daily number of foot trips in the city,
using the sparse pedestrian counters (Fig. 9) and assessing the topology of the walking network.
Moreover, we also deliver an hourly district-level OD-matrix of pedestrians. the architecture of
pedestrian package is presented in the Fig. 10.

Figure 9. The location of ECO sensors for pedestrian counts.

4.4.1 Algorithm
For every pair of districts i and j, we computed the probability that a trip from i to j passes the
sensor k. denote this probability by a(k)i j . This probability is computed based on generating and
simulating a large number of random trips between different city districts and observing the share of
the trips that pass the sensor locations. This observation is highly affected by the topology of the
network and its connectivity.

We start with the static bus OD-matrix. Then a set of random trips is being generated following
the bus OD-matrix. In order to stay realistic, very long trips are being removed from the set of trips.
As a result, all trip distances are less than 3000 meters. An initial OD-matrix X̄ is being generated
based on the aforementioned OD-matrix and the sensor’s data.

10/18

Figure 10. The Architecture of pedestrian package.

The objective is estimating the number of trips between each pair of districts, such that the trips
that pass through the sensors’ locations matches the actual sensor reading. In other words, for every
sensor k,

∑
i j

a(k)i j xi j = y(k)

when y(k) is the number of pedestrians detected by sensor k.
At the same time, we want an OD-matrix which is realistic, meaning that does not deviate very

much from the initial OD-matrix X̄ . To ensure this, we are interested to minimize ‖X− X̄‖2. This
gives us the following quadratic programming problem with

min ‖X− X̄‖2

subject to ∑
i j

a(k)i j xi j = y(k),k = 1, . . . ,number of sensors, i, j = 1, . . . ,number of districts.

For solving the minimization problem, the optimization package QP Solvers for Python is used.
Fig. 11 shows the result for one day of data (hourly OD-matrices are aggregated).

11/18

https://github.com/stephane-caron/qpsolvers

• Green bars are estimated hourly number of pedestrian trips, meaning the sum of all the entries
of the final OD-matrix.

• Yellow bars correspond to the expected number of trips passed by the sensors, if random trips
are generated based on the OD-matrix X ; ∑i jk a(k)i j xi j.

• Orange bars are the real sensors’ read, ∑k y(k), in the day of study.

Figure 11. Estimated number of pedestrians’ trips, the estimated number of sensor readings, and
the real number of sensor readings in different hours of 9 Dec 2021.

4.4.2 Validation
For validating the results of pedestrians’ trips, we compare the hourly sensor readings for each
sensor, with the estimated sensor reading computed by the algorithm, in the corresponding hour.
Fig. 12 presents the aggregated sensors readings and estimates for different hours for 9 Dec 2021.

Figure 12. Total number of sensor readings, and sensors estimations in different hours of 9 Dec
2021.

If we run a simulation based on the The estimated numbers correspond to the the expected
number of pedestrians that pass the sensors. Let S(r)h,k be the reading of sensor k during hour h, and

S(e)h,k be the estimated reading of sensor k in hour h, then the error is calculated as follows for a
selected day.

12/18

Sensor name Sensor count Estimated count

Anne 1866 1889
Kroonuaua 982 966
Moisavahe 2626 2603

Naituse 3486 3477
Raudtee 260 262
Turu sild 5016 5009

Vaike kaar 530 550

Table 2. Aggregated daily sum of sensor readings and estimations for 9 Dec 2021.

Error =

√
∑h,k(S

(r)
h,k−S(e)h,k)

2√
∑h,k(S

(r)
h,k)

2
= 1%.

5 GRAPHICAL USER INTERFACE

As mentioned in section 2, users can see the data analysis pipeline output using a web-based
dashboard application. Users can browse different dates’ results, see how the given date compares
to some historical averages and download the OD-matrices data.

5.1 GUI architecture
The server-side of the web application is based on the Express framework for Node.js. In addition to
serving the HTML/Javascript-based front-end side of the application, the back-end provides API
end-points to first, get the hourly OD-matrices for each modality for a given argument date; and
second, query a set of 7-day aggregate statistics for a given argument date. The responses for both
cases are structured as JSON objects. The 7-day aggregates are further explained below.

PostgreSQL DB

/ Local Disk

Storage

Front-End Back-EndGET ODM
data for date Query ODMs

for date

Query aggregate
statistics for date

GET Statistics
for date

NodeJS

Express

Statistics
.json

ODM
data

.json

Figure 13. Interactions between web dashboard components and persistent storage.

The interaction between the front-end, back-end and persistent storage of the dashboard is
illustrated on Fig. 13.

13/18

5.2 Functionalities
The graphical user interface consists of three distinct views: “Home”, “District Analysis” and
“OD-Matrices”. Each view focuses on the results of a fixed date, and the user can choose other dates.

5.2.1 “Home” View
Home view is loaded by default upon opening the dashboard. A screenshot of the Home view can
be seen on Fig. 14. It provides

• a pie-chart, displaying the overall share of each modality for the entire day as a percentage in
the city.

• a stacked bar-chart, which displays the absolute numeric values of the modalities for each
hour in whole city.

• four numerical statistics. The first three show the average share of modalities for the previous
7 days. These modalities are: “Eco modalities” - the share of bicycles, pedestrians, and
bus trips combined; “Active Mobility” - the share of bicycle and pedestrian trips combined;
“Public transport”- the share of bus trips. The fourth statistic shows the total number of vehicle
trips that were entered the city and the number of vehicles that exited the city (as counted by
AVC data) for the current date.

• an interactive map that visualizes the number of trips to a selected district, for all modalities
or for a selected modality. The user can also toggle between seeing the number of trips that
originated from the selected district and seeing the trips destined to the selected district.

Figure 14. The default Home view of the dashboard.

14/18

5.2.2 “District Analysis” View
While the Home view mainly showed city-level information, the District Analysis (Fig. 15) shows
information for a single selected district and selected direction - using the selected district either as
the origin or as the destination of trips.

Figure 15. The District Analysis view, with detailed hourly modality data for the selected district,
and direction.

This view shows an hourly stacked bar-chart indicating the absolute number of trips per modality
for the selected district, and direction. The user can use an interactive map to choose the district,
similar to the Home view. In addition to the bar-chart, this view displays an OD-matrix-style table
showing the numeric values for each district. For example, if the user selects Kesklinna district and
direction Origin, the table displays how many trips originated from Kesklinna to the other districts,
for each modality, on the selected date.

5.2.3 “OD-Matrices” View
The third view displays daily OD-matrices for the selected date. The view includes five OD-matrices;
the first four matrices present the number of trips between different districts separated by each
mode of transport, and the fifth OD-matrix shows the aggregated number of trips between districts.
Further The user has the option to download each of the OD-matrices as a CSV file, or as an image.
A screenshot of this view can be seen on Fig. 16.

15/18

Figure 16. OD-Matrices view, which allows downloading the OD-matrices data.

6 FIELD VALIDATION

6.1 Plan Overview
The system is designed to capture large-scale mobility in the city for a whole day. Idealistically, it
will be essential to conduct large-scale testing by collecting reference data about the traffic modality
in the whole city. However, with the available resources, it is not feasible; therefore, based on the
support from the city of Tartu, we planned our testing in the district of Supilinn, which is one of
the smallest districts in the city with controllable entrances/exits. We only focused on pedestrians,
bikes, and vehicles for the test, since due to electronic ticket validation, the number of bus trips is
considered accurate.

Figure 17. Testing area in the district of Supilinn.

16/18

Fig. 17 shows the district as well as the designated spots for doing the manual counts. After
manual counts are obtained for different modes of transport, we compared them with respect to the
calculated ones using our modal split approach for the districts of Supilinn during the same time
interval.

6.2 Results
Table 3 presents the actual and estimated number of trips with different modes in Supilinn on 10 Dec
2021, from 08:00 to 10:00. It can be observed that the result of vehicle estimation differs the most
from the actual counts. Two critical factors influenced the system estimation for vehicle count; first,
Thinnect sensors did not send data and the traffic simulator relied only on AVC sensors. However,
for understanding the traffic flow inside the city, the data of these sensors are crucial. The second
factor is the flow of the vehicles that pass through Supilinn, while Supilinn is not their origin or
destination. These trips are not considered in our estimated OD-matrix; however, they are counted
twice in the real counts, once entering the districts and once exiting the district.

The estimation of bike trips is also affected by the absence of Thinnect data. Moreover, due
to the weather condition and the amount of snow, the number of cyclists has dropped to near zero.
Given the circumstances, we believe the quality of bike trip estimation is acceptable.

As it is mentioned in section 4.4.2, the pedestrian estimation relies on a novel optimization
approach and reflects a very low error rate both in the lab validation and the field testing.

Mode Real count Estimated count

Bike 18 10
Pedestrian 338 333

Vehicle 1074 513

Table 3. The number of trips obtained from the field test and the estimated number of trips for
Supilinn, on 10 Dec 2021, from 8:00 to 10:00.

Mode Mod-split real Mod-split estimation Supilinn Mod-split estimation Tartu

Bike 1.2 % 1.1 % 0.4%
Pedestrian 23.6% 38.9% 23.5%

Vehicle 75.1% 59.9% 76%

Table 4. Modal split for the real counts in Supilinn, estimated counts for Supilinn, and estimated
counts for the city of Tartu on 10 Dec 2021, from 8:00 to 10:00.

For validating the designed system against the actual field counts, we compare the modal split
obtained by the real counts, Supilinn trips and Tartu trips, in the same two hours time interval. The
relative error of the modal split for real counts and Supilinn trips equals 27%.

In another approach, we may consider the mobility in Supilinn as a sample of mobility in the
city and compare the modal split from the real counts and city-level estimation in the same time
interval. With this vision, the relative error of 2% is obtained.

7 RECOMMENDATIONS
For good estimation and performance of our system, it is important to maintain the reliability of
the data streams transfer and their quality. Furthermore, to increase the accuracy in estimating

17/18

the pedestrians and cyclists, we suggest introducing more sensors capable of splitting between
cyclists and pedestrians, similar to Turu bridge sensor (ECO sensors). In general, increasing and
diversifying the sensors technology or IoT devices can positively impact the system, but they have
to be implemented in key/strategic geo-locations. For example, covering all the bridges is essential
and also all the entries/exits to the city.

8 APPENDIX

Figure 18. The detailed architecture of modal split.

18/18

